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ß . . were all the fountains of the great deep broken up, and the windows of heaven 
were opened. And the rain was upon the earth forty days and forty nights. Genesis, 6, 
11-12 

ß .. there came seven years of great plenty throughout the land of Egypt. And there 
shall arise after them seven years of famine ... Genesis, 41, 29-30 

Abstract. By 'Noah Effect' we designate the observation that extreme precipitation can be 
very extreme indeed, and by 'Joseph Effect' the finding that a long period of unusual (high 
or low) precipitation can be extremely long. Current models of statistical hydrology cannot 
account for either effect and must be superseded. As a replacement, 'self-similar' models ap- 
pear very promising. They account particularly well for the remarkable empirical observa- 
tions of Harold Edwin Hurst. The present paper introduces and summarizes a series of 
investigations on self-similar operational hydrology. (Key words: Statistics; synthesis; time 
series) 

INTRODUCTION be of interest to note that they are instances 
By 'Noah Effect' we designate the fact that of a broad family of 'self-similar models.' The 

extreme precipitation can be very extreme in- concept of 'self-similarity' originated in the 
deed, and by 'Joseph Effect' the fact that a theory of turbulence, to which it was long re- 
long period of high or low precipitation can be stricted, but it has recently become of value 
extremely long. In a series of papers to which in studying a variety of natural phenomena 
the present work serves as Introduction and (see for example, Mandelbrot [1963, 1966, 
Summary, we shall describe in detail a family 1967a, 1967b]). 
of statistical models of hydrology which we A word of acknowledgment before we pro- 
believe adequately account for the Noah and ceed. In investigations of current statistical 
Joseph effects. Different papers in the series models of hydrology, one of the most active 
will be devoted, respectively, to mathematical groups has been that founded by Professor 
considerations, to accounts of computer simu- Harold A. Thomas, Jr., at Harvard. In view 
lations, and to analyses of empirical records. of the critical tone of much that follows, the 
Later papers will study various problems of authors hasten to express here their personal 
water control engineering as problems of op- indebtedness to Harold Thomas. He directed 
erations research, which they were long be- B.B.M.'s curiosity to Hurst's work and to 
fore the term 'operations research' itself was hydrology and later initiated J.R.W. into the 
coined. intricacies of 'synthetic hydrology' and simu- 

The models to be described were advanced lation. 

and argued in Mandelbrot [1965] and Mandel- 
brot and Van Ness [1968]. We have carried PARTISAN COMMEI•ITS Ol•l CURREI•IT STATISTICAL 
out extensive experiments of every kind to test tIYDROLOGY 
and develop these models, and we have, in Current models of hydrology assume precip- 
our opinion, confirmed their soundness. It may itation to be random and Gaussian (i.e., fol- 
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lowing the normal probability distribution, combining hydrology and climatology, is far 
with its 'Gaiton ogive') with successive years' from being of Gauss-Markov form. 
precipitations either mutually independent or Other approaches to hydrological modeling 
with a short memory. 'Independence' implies also start with a Gauss-Markov process and 
in particular that a large precipitation in one then introduce modifications that tend to be 
year has no 'aftereffect' on the following years; more extensive when records are long than 
'short memory' means that all aftereffects die when they are short. This general procedure 
out within a few years. The classical short can be illustrated using two examples. The 
memory mechanism, the Gauss-Markov process, first involves the loose but intuitive idea of 
is a 'single lag linear autoregressive model.' In the duration of a drought, the second the 
this ease, aftereffects die out in geometric more rigorous but less intuitive concept of the 
progression and decrease rapidly. More gen- Hurst range. 
eral are the 'multiple lag linear autoregressive For droughts the point is that, if an inde- 
models.' One feature common to all these mo- pendent Gauss process or a Gauss-Markov 
dels is their belonging to 'the Brownian domain process is chosen to fit best the other aspects 
of attraction,' a term which we shall define of precipitation, it will greatly underestimate 
later. It is our basic belief that models in the the durations of the longest drought. There- 
Brownian domain cannot account for the Noah fore, such processes must be modified by con- 
and Joseph effects. These models underesti- sidering more durable aftereffects (for example, 
mate the complication of hydrological fluetua- through 'multiple lag' models). One who eonsid- 
tions and the difficulty of 'controlling them ers such modifications as nuisance corrections to 
by establishing reserves to make the future a basic Gauss-Markov process will naturally try 
less irregular' (to paraphrase the title of to fit all available data with a 'minimal' modi- 
Mass• [1946]). fled process, having as short a span of after- 

Disappointment with specific models in the effects as possible. However, when the sample 
Brownian domain is today very widespread duration is sufficiently increased, 'unexpectedly' 
among hydrologists (for example, see Yev- long droughts will again be observed. This 
jevich [1968]). Therefore, our sweeping asset- shows, after the fact, that the 'minimal' model 
tion can only be controversial in its blanket had attributed a special significance to the 
condemnation of all models in the Brownian longest sample T that was available when it 
domain. To try to minimize such controversy, was constructed. As the sample increases, such 
we shall now describe various stop-gaps that a model must be changed. (For example, the 
have been proposed. We shall point out that, number of lags must be increased.) 
in effect, such models end up outside the 'Drought' being, as we said, an elusive eon- 
Brownian domain. eept, let us now proceed to the observed be- 

Some authors eventually conclude that a havior of the 'Hurst range,' which is less intui- 
description of hydrological reality requires a tire but easier to study. To define it, one begins 
Gauss-Markov process with time-varying pa- by evaluating the total capacity R(s) a reser- 
rameters. Such models must, however, be voit must have had, in order to perform 'ideally' 
changed before their consequences have had for s years. 'Ideal performance' here means (a) 
time to develop fully. For example, J before that the outflow is uniform; (b) that the re- 
the sample average of precipitation has had servoir ends the period as full as it began; (c) r 
time to 'stabilize' near its expected value, eli- that the dam never overflows; (d) that the 
marie change is assumed to modify that ex- capacity is the smallest compatible with (a), 
pectation. We believe such models to be rather (b) and (c). The concept of an ideal dam 
pointless, because the usefulness of a statistical is of course purely retrospective, since data 
model lies primarily in its large sample predie- necessary to design such a dam are only 
tions. Since a changing expected value easily known when it is too late. However, the past 
overwhelms Gauss-Markov fluctuations, a dependence of the ideal capacity upon s tells a 
Gauss-Markov hydrological model can be used great deal about the long-run behavior of a 
only in conjunction with some 'master model' river on which an actual dam is to be built. 
ruling climatic change. The over-all model, Postponing qualifications to later papers, let us 
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describe a striking discovery H. E. Hurst made 
while examining R(s) for the Nile and other 
geophysical records. Hurst divided the capacity 
R(s) by the standard deviation $(s) of s suc- 
cessive discharges. The empirical finding, then, 
is that save perhaps [or small values o] s, 
the rescaled range R(s)/S(s) is proportional to 
s • with H a constant between 0.5 and 1. Hurst 

judged H to be 'typically' near 0.7, but other 
estimates put H much higher, above 0.85. An 
independent Gauss model yields R(s)/S(s) • 
0.5. Gauss-Markov models, 'multiple lag' mo- 
dels, and all other models in the Brownian do- 
main give a more complex prediction' R(s)/ 
$(s) • s ø'5 for large s, but R(s)/S(s) grows 
faster than s ø'5 for small or moderate s, which 
we shall call the 'initial transient region.' In 
this transient region a variety of different be- 
haviors may be obtained. Moreover, many 
models may lead to the same transient behavior, 
which makes them indistinguishable from the 
viewpoint of predictions concerning R(s)/$(s). 
Then, if one has only the values of R(s)/$(s) 
for I _• s _• T (with T a finite duration), 
many different models of the BrownJan domain 
are likely to yield predictions undistinguish- 
able from the data. When s exceeds T, how- 
ever, the Hurst range of every one of these 
processes will soon merge into the classical s ø'* 
pattern. So far such a convergence to s ø'• has 
never been observed in hydrology. Thus, again, 
those who consider Hurst's effect to be a tran- 

sient implicitly attach an undeserved impor- 
tance to T, which is typically the currently 
available sample sizes. These scholars condemn 
themselves never to witness the full asymptotic 
development of the models they postulate. 

TOWARDS A CHANGE Or DIRECTION IN 

HYDROLOGICAL MODELING 

We have now sketched a few reasons, to be. 
fully developed later, why we dislike hydro- 
logical models obtained by 'patching up' the 
Gauss-Markov process. It should be understood 
that this criticism does not imply that we ex- 
pect to be able, with some other model in- 
volving few parameters, to represent fully the 
tremendously complicated hydrological reality. 
A model having few parameters can only be a 
'first approximation,' and we believe that such 
a first approximation must endeavor to 'catch' 
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the main features of the problem, namely the 
Joseph and/or Noah Effects. 

To characterize our proposed non-Brownian 
first approximations, the loose distinction be- 
tween 'low-frequency' and 'high-frequoncy' phe- 
nomena is useful. Using a Gauss-Markov proc- 
ess implies fitting high frequency effects first 
and worrying about low frequency effects later. 
We propose to invert this order of priorities. 
Conveniently, we shall be able to use the term 
'low frequency' in either of its main meanings, 
to designate either a rarely occurring phenom- 
enon, or an oscillating phenomenon with a long 
wavelength. 

The concepts of 'low' and 'high' frequency 
are, of course, relative. Natural phenomena 
cover a continuous spectrum, in which very low 
frequencies of turbulence theory and very high 
frequencies of hydrology overlap around one 
cycle per day. This frequency, being funda- 
mental in astronomy, may also separate zones 
in which intrinsically different mechanisms rule 
the fluctuations of precipitation. The same 
holds for the wavelength of one year. The third 
important wavelength in hydrology is 50 to 
100 years, which we shall refer to as a 'lifetime.' 
This is roughly the horizon for which one de- 
signs water structures and also, coincidentally, 
the length of most hydrological records. The 
importance of this wavelength is of human, not 
astronomical, origin; it is purely 'anthropo- 
centric.' Whereas precipitation fluctuations of 
wavelength near one day or one year may 
participate in several physical mechanisms, 
fluctuations of precipitation of wavelength near 
one lifetime are likely to participate in one 
mechanism only. Thus, the latter are likely 
to be simpler than the former. Now assume 
that one wants an approximation valid over a 
wide band of frequencies. It may be convenient 
to start by asking for a good fit in some narrow 
frequency band, with the hope that the formula 
so obtained will be applicable over the wide 
band. Under these circumstances, the band 
near one lifetime, although purely anthropo- 
centric in its definition, constitutes in our opin- 
ion a better basis of extrapolation than the 
band near one year, which has meaning in 
astronomy. 

We realize that a stress on low frequencies 
emphasizes idiosyncrasies. But the purpose of 
hydrological engineering is to guard against 
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the recurrence of such idiosyncrasies, and one 
cannot afford to neglect any available informa- 
tion. 

We also realize that, models in the BrownJan 
domain having long been recognized as ap- 
plicable in many fields of science (beginning of 
course with the BrownJan motion of statistical 

mechanics), their proponents among hydro- 
logists are often able to identify ready-made 
answers to the standard problems. Our pro- 
posed approach requires more work, but the 
answers appear to be sufficiently better to 
make this work worthwhile. Moreover, the 
concept of self-similarity, to be discussed later 
in the paper, will bring true simplicity. 

'SMOOTI-I' AND •ERRATIC' PROCESSES 

We finally come to the promised character- 
ization of the ']3rownian domain of attraction' 

and of related specific meanings for the terms 
'smooth' and 'erratic' time series. We need 

three results of probability theory, two of which 
are classical, and all three of which relate to 
averages of T successive terms of a stationary 
time series designated by X(t). 

One says that X(t) satisfies a law of large 
numbers when its average tends to a limit, the 
expectation œX(t), when T -• o•. This law is 
the theoretical justification of the common 
practice of taking sample averages as estimates 
of population expectations. 

One says that X(t) satisfies the more de- 
manding Central limit theorem in its original 
form when, for large T, the distribution of the 
average becomes approximately Gaussian, with 
a variance tending to zero as T -• •. This is 
the justification of the common belief that the 
sample average is likely, if T is not small, to 
be a good estimate of the expectation. A corol- 
lary of this is that, for large T, even the largest 
of the T quantities T -• X(t) contributes neg- 
ligibly in relative value to the average T -• Zt:• • 
X(t). 

The final result is less well known but very 
important in applications. Let us call 'past 
average' the expression T -• Y•t:-•2 X(t) and 
'future average' the expression T -• Z•:• • X(t) 
and consider the difference between these two. 

The third basic result on the averages of 
random sequences asserts that, as T -• •, the 
two averages can be considered independent, 
so that the variance of their difference is 

double the variance of each of them. It is un- 

fortunate that this property does not yet have 
a generally accepted name. Let it be said im- 
mediately that this property fails to hold, either 
for fractional noises or for approximation 
thereto used in Mandelbrot and Wallis [1968a]. 
These processes satisfy, however, both the law 
of large numbers and the .central limit theorem. 
If a natural phenomenon obeys the conditions 
of a validity of all three of these mathematical 
theorems, it will be called 'smooth' or 'in the 
Brownian domain of attraction.' There exist 

phenomena that fail to obey the conditions of 
validity of the third theorem, or of the last two, 
or even of all three. Such phenomena will be 
called 'erratic.' For example, the average T -• 
Z•:• • X(t) may ]ail to tend to any limit. Or it 
may tend to a limit, whereas its distribution 
does not tend to the Gaussian. Or it may tend 
to a Gaussian limit, whereas 'past' and 'future' 
averages fail to become asymptotically inde- 
pendent. The importance of this latter circum- 
stance for the hydroIogist lies in the coincidental 
equality between the order of magnitude of 
most past records and the horizon of most 
designs (both equal one lifetime), and in the 
fact that, true expectations being unknown, 
planning requires the determination of the dif- 
ference between the expected mean flow over a 
future lifetime and the known past average. 

It is readily verified that the Gaussian mod- 
els with a limited memory all assume hydro- 
logical phenomena to be 'smooth.' The Noah 
and Joseph effects, on the contrary, not only 
suggest that hydrological data are 'erratic' but 
also express the major two forms of erratic 
behavior. We shall speak of 'Joseph.-erratic' 
behavior when the wettest decade within a cen- 

tury includes an extraordinary 'term' of wet 
years. We shall speak of 'Noah-erratic' behavior 
when a few of the years within the century wit- 
ness 'floods' so major as to affect the average 
precipitation for periods of many years within 
which the flood years occurred. Needless to say, 
a process can be both Joseph- and Noah-erratic 
simultaneously, a complication that we shall 
face much later. 'Pure Joseph-erratic' behavior 
will be said to apply when none of the yearly 
precipitations during a 'wet term,' had it stood 
alone, would have been interpreted as a flood. 

Clearly, the word 'erratic' should not be 
construed to suggest a 'black-and-white' con- 
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trast. The three theorems in question are, in- 
deed, asymptotic, but scientific applications of 
mathematics always deal with T's in some finite 
horizon. Consider, for example, an infinite 
(nonrandom) series a(t). For the mathemati- 
cian, the basic distinction is whether the sum 
Y.t=• © a(t) is, respectively, finite or infinite. For 
the scientist, on the other hand, the ultimate 
convergence of Y.t=• a(t) is of little import, un- 
less Z,• • a(t) is already close to its limit. There- 
fore, the concept of 'erratic' must be considered 
as coming in various degrees of intensity, rather 
like 'grey.' 

THE ISSUE OF THE MARGINAL DISTRIBUTION OF 

TI-IE YEARLY FLOW 

We shall now characterize more accurately 
the idea of a 'pure Joseph-erratic' process, 
using the concept of 'marginal distribution,' 
which is defined as the distribution of the values 

of a process irrespective of their chronological 
order. We believe it reasonable to demand that, 
when the order of values of a pure Joseph- 
erratic sample is scrambled, one should be left 
with a smooth process. Thus, the marginal dis- 
tribution of these values will draw a line be- 

tween, on the one hand, Noah-erratic processes 
and, on the other hand, processes that are 
either smooth or pure Joseph-erratic. 

The paragon of the pure Joseph-erratic is a 
process with a Gaussian marginal distribution. 
We should therefore, in every case, begin by 
checking whether the Gaussian marginal dis- 
tribution applies. For this, in a first approxima- 
tion, 'probability paper' plots are good enough. 
They evidently show that it is not exceptional 
that the marginal distribution be either nearly 
Gaussian or highly non-Gaussian. To stay near 
the land of Joseph, an example of nearly Gaus- 
sian marginal distribution is provided by the 
level of the Nile at the Rhoda Gauge near 
Cairo, an example of highly non-Gaussian by 
the annual discharge from Lake Albert. To find 
other examples of either behavior, it suffices to 
thumb through Boulos [1951]: Straight line 
interpolations are quite acceptable in certain 
cases, poor but perhaps bearable in some other 
cases, and dreadful in still others. Much less 
complete data are available in other places, but 
the existence of huge deviations from the Gaus- 
sian is very familiar' For example, runoffs due 
to major storms may appear on histograms as 

distant 'outliers.' Also, high water levels, which 
would be considered 'millenium floods' if one 

extrapolated the tails of the histogram from its 
body, occur much more frequently than they 
should under the Gaussian assumption. 

Despite the importance of deviations from 
the Gaussian, we believe it worthwhile to begin 
our investigation of the Joseph Effect by Gaus- 
sian processes X(t), which are by definition 
such that the joint distribution of their values 
at any finite number of instants is a multivari- 
ate Gaussian variable. Such processes will be 
examined in the next several sections. In the 

section near the end of the paper, highly non- 
Gaussian processes with a Noah Effect will be 
mentioned. (Processes that are only 'locally' 
Gaussian are studied in Mandelbrot [1968].) 

GAUSSIAN PROCESSES AND TI--II• COVARIANCE 

Gaussian processes are well known to be fully 
specified by their covariance function: If X (t) 
is of zero mean and unit variance, the covari- 
ance C(s) is the correlation between X(t) and 
X(t -[- s). (Of course, in the case of Gauss;.an 
variables zero correlation is identical to in- 

dependence.) Our problem is, then, to use the 
behavior of C(s) to classify a Gaussian process 
as smooth or Joseph-erratic. What we need here 
is a distinction between a form of high-fre- 
quency effect--namely 'short lag' or 'short run' 
effects--and a form of low-frequency effect-- 
namely 'long lag' or 'long run' effects. Short lag 
effects depend upon the values of C(s) for a few 
small values of s. Long lag effects depend upon 
the other values of C(s). We shah now examine 
this dichotomy on four examples. The first is 
the process of independent increments, whose 
covariance C•(s) satisfies C•(s) -- 0 for all s 
0. The second is the Gauss-Markov process of 
covariance Ca(s) -- exp(--]sl/s). The last two 
are the processes of covariances respectively 
equal to Cs(s) -- (1 -]- Isl2/s•) -• and C•(s) -- 
(1 -[- Isl/s•) -ø'5, where s•., s• and s• are constants. 

The above four covariances differ considerably 
from each other in the long run, but C2(s), 
C3(s), and C•(s) are all three smooth and mono- 
tone in the short run. Therefore, if the sample 
duration is short, and the sample covariance 
correspondingly 'noisy,' the graphs of C•(s), 
C• (s), Cs (s), and C• (s) may be undistinguish- 
able, not only to the eye but even from the 
viewpoint of many tests of statistical signifi- 
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cance that examine each value of s singly. That 
is, such statistical tests are liable to indicate 
that the differences between the sample covari- 
ance and either of the functions C•(s), C.•(s), 
C•(s), and C•(s), are not statistically significant 
for most s. The statistician could then conclude 

that all the data will be acceptably fitted as 
soon as short run data have been fitted. There- 

fore, he will advise the hydrologist that there 
is no evidence that his data were not generated 
by an independent Gauss process (C•), or a 
Markov-Gauss (C2), or perhaps some more 
involved short-memory process. 

This would, however, be a very rash con- 
clusion. For example, under the hypothesis that 
the true covariance is C•(s), one would expect 
the relative proportion of positive to negative 
sample covariances to be about one. This pro- 
portion would be larger under the hypothesis 
C.o(s), still larger under C•(s), and larger yet 
under C4(s). Thus, if statistical criteria geared 
towards low-frequency effects can be developed, 
it is reasonable to expect them to show the 
same data to be significantly closer to C3(s), or 
to C•(s), than to C2(s). 

Our need, then, is to enhance long-run prop- 
erties of a process while eliminating short-run 
wiggles. To do so, the best procedure .is to in- 
tegrate or to use moving averages (fancier 
averages will not be considered here). Three 
methods of dealing with long-run effects de- 
serve to be singled out. 

TI-IE VARIAI•CE OF CUMULATED FLOWS 

Let the 'accumulated flow' since time 1 be 

defined as Z•q• X(u) and designated as X•(t). 
Then, G.I. Taylor's formula (see Friedlander 
and Topper [1961]) can be used to evaluate 
the variance of AX • X •(t + s) -- X •(t) -- 
Z•:,,• • X(u) -- X(t + 1) ... • X(t +s). This 
variance is given by sC(O) • 2 Z• • (s -- u) 
C(u), which immediately introduces a basic 
long-run dichotomy. 

When Z• © C(u) • •, var lAX •] -- var 
[X•(t + s) -- X•(t)] is found to be asymp- 
totically proportional to sZ•_•C(u), and X(t) 
is found to be in the BrownJan domain of at- 

traction. 

When, on the contrary, Z•:o•C(u) diverges 
sufficiently rapidly, var [.AX •] grows faster 
and X is not in the Brownian domain. When, 
for example, C(u) -- C,(u), one finds that 

var lAX •] ~ s •'5, where • means 'asymptoti- 
cally proportional to.' More generally, let C(u) 
• u 2u-• for large u, with 0.5 < H < 1. Then, 
for large s, var [AX •] --• s 2s. Incidentally, as- 
suming implicitly that Z•:o•C(u) < oo, G.I. 
Taylor suggested this infinite sum as a measure 
of the span of temporal dependence in a time 
series. The Taylor span is thus infinite for 
C•(s), finite and easy to estimate in cases like 
C•(s) or C•(s), where the series Z•C(u) con- 
verges rapidly, and, finally, finite but hard to 
estimate in cases like C•(s), where the series 
Z•=o•C(u) converges slowly. 

TI-IE RANGE, TI-IE JOSEPH EFFECT, AND 
I-IURST'S LAWS 

Curiously, empirical data about the behavior 
of vat [,AX •] in hydrology have been exam- 
ined only after those relative to another meas- 
ure of over-all behavior of a process, namely 
R(s)/S(s), where the sequential range R(s) 
was defined earlier to be the capacity of a 
reservoir capable of performing 'ideally' for s 
years and S(s) to be the standard deviation of 
yearly flow. Among Gaussian processes, the 
dependence of R (s)/S(s) upon s sharply dis- 
tinguishes smooth from Joseph-erratic pro- 
cesses. This is already obvious for Joseph's own 
example of the seven years of high precipitation 
followed by seven years of drought, for which 
the ideal reservoir would have had to be enor- 

mous. If wet and dry years alternate at any 
point of a record, then ideal reservoir size is 
decreased. It is the task of mathematics to 

express this reduction in numbers. 
First consider the case when X(t) is an in- 

dependent Gauss process. Then, when s is large, 
both R(s) and R(s)/S(s) equal N/s, multiplied 
by some 'universal' random variable inde- 
pendent of s. The little that is known about 
those random variables is due to Feller [1951]. 
For the .Gauss-Markov process and for other 
models for which the memory Z•_-o'C(u) is 
finite, the 'N/s law' remains true, but the multi- 
plying random variables are changed. 

The case of series exhibiting the Joseph 
Effect is entirely different. For such series, 
the N/s law fails, as was first noted by Harold 
Edwin Hurst [1951, 1956, 1965]. For hydro- 
logical series, as well as for many other natural 
time series, R(s)/S(s) increases like Cs •. Here, 
C and H are positive constants; H may range 
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between 0 and 1 and is seldom near 0.5. We 

shall call this empirical finding 'Hurst's law.' 
Moreover, •/var[.AX•], considered earlier, is 
also proportional to s s rather than to s ø", as 
suggested by the usual simple models. This will 
be called 'Hurst's law for the standard devia- 

tion,' or 'Langbein's corollary of I-Iurst's law,' 
because it was first noted in Langbein's com- 
ments on Hurst [1956]. 

Strictly speaking, Hurst claimed a more de- 
manding 'one parameter s s law,' according to 
which R•s)/S(s) is asymptotically equal to 
(s/2) s. His reasons for claiming that C • 2 -s 
are not too clear or convincing. Moreover, 
separate selection of H and of C can obviously 
ensure a better fit. It also yields a different 
estimate of H. For example, Ven Te Chow 
in his discussion of Hurst [1951] found a case 
where H goes up from 0.72 to 0.87 when C 
is separately estimated. Also, we found cases 
where the best estimate of H is below 0.5, which 
contradicts Hurst's assertion that 0.5 ( H ( 1. 

See Mandelbrot and Wallis [1968c] for revised 
values of H. 

Note also that Hurst's original '(s/2) • law' 
has proven dangerous. In some cases it tempted 
him, as well as other authors, to estimate H 
from a single sample of natural or simulated 
values of X(t). Such estimates should be dis- 
carded. The revised statement we use means 

that estimation of H requires many values of s 
and, for every value of s, a large number of 
starting points t spread over the total sample 
of length T. 

On the other hand, every specific model of 
the Joseph Effect, such as the fractional noise 
to be described in the sequel, will yield a rela- 
tion between C and H, whose conformity with 
experience will test the value of the model. 

SPECTRAL AI•ALYSIS: PRIAI'CIPLE AAI'D APPLICATI01• 

I1• IEYDROLOGY 

In addition to the behavior of var (•iX •) 
and of Hurst's range, a third way of looking at 
low frequency phenomena is through spectral 
(or Fourier or harmonic) analysis. We only 
mention it here to say that the spectral density 
of hydrological records peaks sharply for very 
low frequencies, as is also the case for the so- 
called !:• noises [Mandelbrot, 1967a]. A full 
discussion of this topic is postponed to the 
next paper. 

RELATIOAl' BETWEEI• THE JOSEPIE EFFECT, 

HURST'S LAW, AAI'D THE LOl•G RUN 
BEHAVIOR OF THE COVARIAAI'CES 

To account for the above listed findings con- 
cerning var(AX*), R(s)/S(s), or the spectrum 
has proved to be very hard. For example, 
perusal of the discussion of Hurst [1951] and 
Hurst [1951] demonstrates the kind of des- 
perate expedient necessary to fit his finding 
within the universe of the simple statistical 
models. Claiming (incorrectly, as we shall 
demonstrate presently) that there exists no 
stationary random process with a range follow- 
ing the s s law, several among the discussants 
have suggested either giving up statistical sta- 
tionarity or invoking nonrandom 'climatic' 
changes. 

A more hopeful reaction, already mentioned 
in the partisan comment at the beginning of 
this paper, is exemplified in such works as 
Ants and Lloyd [1953] and Fiering [1967]. 
These authors, and others, have constructed 
stationary stochastic processes of the usual 
kind (i.e., in the Browntan domain of attrac- 
tion, satisfying Z•C(u) • •) for which 
both range and standard deviation are propor- 
tional to s s over a finite span of values of s. 
But the usual •/s behavior still applies beyond 
this span. Thus, the s s law is here a property 
of what we have called a transient span. This 
transient may be made arbitrarily long. But 
long transients can only be achieved with com- 
plicated processes with a long memory. For ex- 
ample, Fiering [1967] (p. 85) had to use an 
autoregressive model with 20 lags to ensure 
that Hurst's law holds over the span I • s • 
60. 

An alternative to this approach is based 
upon the existence of the self similar random 
processes, pointed out by Mandelbrot [1965] 
and examined below. For such processes, 
Hurst's law holds for all values of s. Even more 

important from our viewpoint, which empha- 
sizes low frequency phenomena, is the exist- 
ence of processes for which Hurst's law holds 
for the short as well as for the long run. For 
the standard deviation, this was already proved 
when we noted in passing that 

%/var [AX*] •, s • 
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whenever it easier to generalize' We claim that the in- 
dependent Gauss process X(t) is so convenient 

C(s) ,'• s 2•-•' because of the possibility of interpolating 
The same asymptotic behavior can be shown •:• X(u) to continuous times with the help 
to hold /or the range R(s) and the rescaled of a 'self-similar' random process B(t), called 
range R (s)/S(s). Browntan motion (also called Bachelier pro- 

cess, or Wiener process). To define self-simi- 
This observation is central to our study of larity, one must consider a portion of B(t), 

the Joseph Effect. Before we examine it more with t varying from 0 to T, and rewrite it as 
closely, let us show how it .can explain the B(h T), with h varying from 0 to 1. 'Self- 
existence of models in which Iturst's law holds similarity' then expresses the fact that the 
in an initial transient. The key is that the rescaled function T-ø'SB(h T) has the same 
values of var[X•(t q- s) -- X•(t)] for s • T distribution for every value of T. 
are affected only by the values of C(s) for From this, one immediately deduces that 
s • T. Hence, changes in the covariance for 
s • T will pass unnoticed when only the span %/var [B(t + s) -- B(t)] = s ø'5 and 
s • T is observable. Now suppose that, start- 
ing from (say) the covariance C(s) - (1 + max B(t •- u) -- min B(t •- u) -- Cs ø'•, 
10s) •-•, long lag covariances (s > T) are 
decreased sufiqciently to make Z•_-o•C(u) con- with C a constant. These statements are forms 
vergent. The modified process X(t) is thus of the s ø'5 law, but they are valid uniformly 
'brought back' into the Browntan domain of (that is, for all s) rather than asymptotically 
attraction. It could even be made into a (that is, for high s). 
'multiple lag' autoregressive model, which is By analogy, when studying the laws of Hurst, 
the usual generalization of the Markov model. it is good to know that more general self- 
For such modified processes, Iturst's law con- similar processes exist. A Gaussian process 
tinues to hold for s < T, and for some time X(t), of integral Ba(t) = j'o'X(u)du, is Joseph 
beyond s = T. On the long run, however, it self-similar if the rescaled function T-•Bs(h T) 
will be replaced by the x/s law. For example, is independent of T in distribution. That the 
the standard deviation will equal Cx/s. The s s laws apply to Ba(t) can be seen by simple 
value of this constant depends upon the tail inspection. Ba(t)was called 'fractional Brown- 
selected for the modified covariance. It is ad- tan motion' by Mandelbrot and Van Ness 
justable at will and quite arbitrary. 

We consider such models, in which T plays 
a central role, to be undesirable. 

DEFINITION OF SELF-SI•VIILAR ERRATIC 

GAUSSIAN PROCESSES 

[1968]. 
Unfortunately, the derivative Bu t (t), called 

'fractional Gaussian noise,' is too irregular to 
be studied directly. As we interpolated the in- 
tegral of the independent Gauss process by 
Browntan motion, we must now replace X(t) 

In criticizing the usual statistical models, as by B•(i q- 1) --B•(t). The covariance of this 
applied to hydrology, we don't underestimate function B•(t •- 1) --B•(t) is given for s •_ 
their good features. In particular, wherever by 
the independent Gauss process is an acceptable 
approximation, it is unbeatable. Where one 
must amend this process, there are features 
that one will want preserved. For example, all 
the models of the Browntan domain preserve 
the assumptions that the variance is finite, and 
Taylor's scale [defined as Z•X(u)] is also 

C,(s) = C[(s- 1) •"-+-(s-+- 1) •" 

with 0 <: H <: 1. If % • H • i and s is 
large, one finds 

C,s) • [2H(2H -- 1)C]s 

finite. But they destroy another property that This is precisely the form we have proposed to 
makes the independent Gauss process so con- use to model phenomena obeying Iturst's law. 
venient to manipulate. We shall now express Therefore, our models are approximations to 
this property in an indirect way that will make fractional Gaussian noise. 
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APPLICATIONS OF SELF-SIMILARITY 

To apply self-similarity, one proceeds very 
much as in the classical 'dimensional analysis' 
of fluid and solid mechanics. This is no acci- 

dent. Ifydrology can be considered the low 
frequency application of the theory of turbu- 
lence, in which self-similarity and dimensional 
analysis were introduced by yon Karman and 
Kolmogoroff (see Friedlander and Topper 
[1961]. 

An illustration of dimensional analysis is en- 
countered when dealing with flows of water in 
vessels of the same shape but of different di- 
mensions and at proportionately different veloc- 
ities. Then the calculations need not be repeated. 
It suffices to solve all relevant problems once. 
Solutions to other cases will be obtained by 
mere rescaling. 

The application of self-similarity to hydrol- 
ogy is in the same spirit. Once one has per- 
formed the calculations relative to some 'refer- 

ence' horizon, answers relative to other horizons 
can be obtained by simple rescaling. This may 
make it worthwhile, in the case of the reference 
horizon, to perform some very lengthy and 
involved calculations that would not otherwise 

be economic. The new hydrology we propose 
may demand readjustments of thought. But 
there is hope that the ultimate outcome of this 
new hydrology will be a set of new and better 
'cookbook recipes.' 

FORETASTE OF A DISCUSSION OF THE 

NOAH EFFECT 

A discussion of the Noah Effect is several 

papers removed from the present introductory 
article. Our approach will resemble the methods 
Mandelbrot [1963] uses to describe the varia- 
tion of commodity prices. The above consid- 
ered function X•(t) -- Z•_•X(u), with X(u) 
the annual flow for the year u, will be the 
counterpart of the price of a commodity at the 
instant t. The very rapid and large changes 
typical of the behavior of prices will be com- 
pared to floods. Sporadic processes (see Mandel- 
brot [1967c] ) will also be needed. 

The Noah Effect certainly raises important 
problems in operational hydrology. Such prob- 
lems are, however, separate from those raised 
by the Joseph Effect. In the next paper we 
shall show that the Noah Effect is not neces- 

sary to explain Hurst's findings, and in the 
third paper that it is insufficient. 
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